The U of MN UAV Lab has flown a variety of sensors in aircraft, ranging from the lowly MPU-6000 (such as is found on an atmel based APM2 board) all the way up to an expensive temperature calibrated VectorNAV VN-100T.  I wish to present a quick field comparison of these two sensors.

DSC04111 Hobby King Skywalker with MPU-6000.

IMG_0550 Sentera Vireo with VectorNav VN-100T onboard.

[disclaimers: there are many dimensions to any comparison, there are many individual use cases, the vn100 has many features not found on a cheap MPU-6000, the conditions of this test are not perfectly comparable: two different aircraft flown on two different days.   These tests are performed with a specific MPU-6000 and a specific VN-100T – I can’t say these predict the performance of any other specific IMU.  Both sensors are being sampled at 100hz externally.  Internally the MPU-6000 is being sampled at 500hz and filtered.  I suspect the VN-100T is outputting unfiltered values – but that is just a guess from the plot results.]

The point of this post is not to pick on the expensive solution, comparisons are difficult with a perfectly level playing field.  But hopefully I can show that in many ways, the less expensive solution may not be as bad as you thought – especially with a little calibration help.

Exhibit A: Raw gyro data in flight

I will mostly let the plots speak for themselves, they share the same vertical scale and cover about the same time span.  The less expensive sensor is clearly less noisy.  This trend holds up when the two sensors are motionless on the ground.

raw-gyros-mpu6000

MPU-6000 gyros (100 seconds of flight)

raw-gyros-vn100

VN-100T gyros (100 seconds of flight)

Exhibit B: Raw accelerometer data in flight

Again, the plots speak for themselves.  Given the same vertical and horizontal scales, the less expensive sensor is by far less noisy.

raw-accels-mpu6000

MPU-6000 accelerometers (100 seconds of flight)

raw-accels-vn100

VN-100T accelerometers (100 seconds of flight)

Exhibit C: Sensor bias estimates

The UMN UAV lab flies it’s aircraft with our own high fidelity EKF library.  The EKF code is the fancy mathematical code that estimates the aircraft state (rolll, pitch, yaw, position, velocity, etc.) given raw IMU and GPS inputs.

One of the arguments against a cheap sensor versus an expensive temperature calibrated sensor is you are paying for high quality temperature calibration in the expensive model.  This is a big deal with mems IMU sensors, because temperature can have a big effect on the bias and accuracy of the sensor.

This next pair of plots requires a small bit of explanation (please read this first!)

bias-estimates-mpu6000

MPU-6000 sensor bias estimates from UMN EKF library.

bias-estimates-vn100

VN-100T sensor bias estimates from UMN EKF library.

What can we learn from these plots?

In some cases the MPU-6000 with external temperature calibration appears to be more accurate than the VN-100 and in some cases the VN-100T does better.

Summary

By leveraging a high quality EKF library and a bit of clever temperature calibration work, an inexpensive MPU-6000 seems to be able to hold it’s own quite well against an expensive temperature calibrated mems IMU.

2017-09-06 13:58:00 -0500 - Written by curt