Basic Details

The Full Video


Here are a couple of comments about the flight.

The conditions were very windy and turbulent, but it was a long drive to the location so we decided the risk of airframe damage was acceptable if we could get good data.

The wing view was chosen so I could observe one aileron control surface in flight.  You might notice that the aileron ‘trim’ location puts the right aileron up significantly from the center point.  A 1.3 pound camera is hanging off the right wing and this weight of the camera has twisted the wing a bit and put the aircraft significantly out of roll trim.  The autopilot automatically compensates for the slightly warped wing by finding the proper aileron position to maintain level flight.

Throughout the flight you can see the significant crab angle, short turns up wind, and really wide/long turns down wind.

Because of the winds, the field layout, obstacles, etc. I was forced to spot the airplane landing in a very very tight area.  I mostly managed to do that and the result was a safe landing with no damage.

Despite the high winds and turbulence, the aircraft and autopilot handled itself remarkably well.  The HUD overlay uses simulated RC pilot sticks to show the autopilot control commands.

The augmented reality graphics are added after the flight in post processing using a combination of python and opencv.  The code is open-source and has some support for px4 data logs if anyone is  interested in augmenting their own flight videos.  I find it a very valuable tool for reviewing the performance of the EKF, the autopilot gains, and the aircraft itself.  Even the smallest EKF inaccuracies or tuning inefficiencies can show up clearly in the video.

I find it fascinating to just watch the video and watch how the autopilot is continually working to keep the aircraft on condition.  If you would like to see how the Skywalker + AuraUAS autopilot perform in smoother air, take a look at Flight #71 at the end of this post:

2017-11-07 15:34:48 -0600 - Written by curt